
AD-A1i 578 ROUTING A USCG BUOVTENDER TO SERVICE AIDS TO i/i
NAVIGATION: A CASE OF THE TRAVELING SALESMAN PROBLEMI
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA J M BECHTLEp)UNCLASSIFIED SEP 84 F/G 15/5 N

7hhhhh.hh

SIIIII I-' 2-
1321112.2i

I1l-25 1111124=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
ROUTING A USCG BUOYTE\DER

TO SERVICE AIDS TO NAVIGATION:
A\ CASE 01: THE TRAVELING SALESMAN PROBLEM

.2MAR 2 2 lg985

L.AJ Jon Michael Bechtle

September
19S4

Ihes is \ i sor: G. L. Lindsay

\,provcl !or puhlic release; distribution unlimited.

85 03 11 114

SECURITY CLASSIFICATION nF TMIS PAGE fWho. DAe Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

r4)I 5 6 __,_

4. TITLE land Subltitle) 5. TYPE OF REPORT & PERIOD COVERED

Routing a USCG Buoytender to Service Aids to Master's Thesis

Navigation: A Case of the Traveling Salesman September. 1984

Problem 6. PERFORMING ORG. REPORT NUMBER

7. AUTORa) I. CONTRACT ON GRANT NUMUER(a)

Jon Michael Bechtle

3. PERFORMIN3 ORGANIZATION NAME AND ADDRESS 10. PROGRAM fLEMENT. PROJECT. TASK
AREA I WOR(UNIT NUMBERS

Naval Postgraduate School

Monterey, California 93943

I1. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

September, 1984
13. NUMBER Of PAGES

71
14. MONITORIiN, AGENCZ' NAME I ADDRESS5II dillrent from Controlien4 OftfI) 15. SECURITY CLASS. (of thl report)

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16 DIS'rIB8,;Ti0N STA E4E ,
0

'C1 l11. Report/

Approved for public release; distribution unlimited.

I acession For

!7. CISTP IgTiON STATFkME-. 'of .,e sbetract enlered In Block 20, II diterent tram Report) NTTS GRA&I
DTIC TABUnazi'ounced

Justification

i aI SU ,-EM EN TA " '' E. S B y -

Distribution/

Availability Code.
;Avail and/or

17 Wv r - nriSs nu* - re,er a .Jeoit necesay aind Iasntfliv by biocc n..mber, Dizt special

traveling salesman, tour, k-optimalD

2: AB8.TRAC ' Continue on evel e s lue SI t I netleserv Om IdentffY bv 6loco numberg).

--- A problem of routing a U.S. Coast Guard buoytender to service aids to

navigation is formulated as a symmetric traveling salesman problem. A heuristic "r'F-f'

algorithm is developed which seeks the minimum distance tour which can be taken

by the buoytender to visit the aids to navigation. A user's guide is provided.

The algoritam is programmed in Convergent Technologies FORTRAN for use on

the Coast Guard Standard Terminal. Several problems are solved by the

algorithm producing solutions that are optimal or nearly optimal.- ,-

DD I JA),M.1 1473 EDITIONoOF I NOVS IS OSSOLETE
, " I ,. Lr-. . -60 1 SECURITY CLASSIFICATION Or TNIS PAGE fRtor Dole Entered)

Ajjrcved for public release; distribution unlimited.

Routing a USCG Buoytender
to Seivice Aids to Navigation

A Case of the Traveling Salesman Problem

by

Jon N. Bechtle
lieutenant, United States Coast Guard
B.S., U.S. Coast Guard Academy, 1978

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN OPLEATIONS RESEARCH

from the

NAVAl POSTGRADUAIE SCHOOL
September 1984

4....
Aut hor:

Approved by:

T esis Advisor

0 /, Second Reader

-el

-'&hairman, Department of Operations Analysis

L D* --- - --

Lean of Inforzati* and Policy Sciences

0

ABSTRACT

A Frcblem of routing a U.S. Coast Guard buoytender to

service aids to navigation is formulated as a symmetric

traveling salesman prcblem. A heuristic algoritam is devel-

oped which seeks the minimum distance tour which can be

taken by the buoytender to visit the aids to navigation. A

user's guide is provided.

The algorithm is programmed in Convergent lechnologies

FORTRAN for use on the Coast Guard Standard Terminal.

Several problems are solved by the algorithm producing solu-

tions that are optimal or nearly optimal.

3

. ". " *- :"' - ."."." " ":.'. .". " ".... .. "."..." . -.. ". -.....'..,, -.. !

7ABLE OF CONTENTS

I. INTRCDUCTION 8

II. NATURE OF THE PROBLEM 10

A. DESCRIPTION OF THE TRAVELING SALESMAN

PROBLEM 10

B. DESCRIPTION OF THE SOLUTION REQUIREMENTS o . 13

C. COMPUTING HARDWARE 14

III. A BRIEF SURVEY OF SOLUTION METHODS FOR THE TSP . . 16

A. TOUR BUILDING 16

* B. SUBTOUR ELIMINATION 18

C. THE ONE-TREE FORMULATION 21

D. TOUR IMPSCVEMENT 22

* IV. BUOYTENDER ALGORITHM 25

A. ALGORITHM SELECTION 25

B. PROGRAMMING THE ALGORITHM 26

C. ALGORITHM DESCRIPTION 29

V. PEOGEAM RESULTS AND CONCLUSIONS 40

A. PROGRAM RESULTS 40

E. CONCLUSICNS 44

APPENDIX A: USER'S GUIDE TO PROGRAMS 45

A. USE OF MATUTL.RUN 46

1. Create a Distance Matrix 47

2. Extract a Matrix 49

3. Correct a Previously Stored Matrix 50

4. Prepare a Distance latrix for Hardcopy . . 50

5. List Aid Names 51

E. USE OF RCOTE.RUN 51

4

APPENDIX B: SAMPLE OUTPUT OF BUOYTENDER ROUTE

SELECTICN PROGRAM 53

APPENDIX C: LISTING OF BUOYTENDER ROUTE SELECTION

PROGRAM 54

APPENDIX D: LISTING OF MATPIX UTILITIES PROGRAM 61

LIST CF REFERENCES 68

INITIAL DISTRIBUTION LIST 71

5

.- " - . ° * . • o ° -• " . . ".
°

. -.

LIST OF TABLES

1. Tcurs for BLACKHAW Problem.......... .. 42

2. Results of Test Problems*43

66

LIST OF FIGURES

2.1 Triangle Inequality / Obstructed A to C Path . . 13
4.1 Circular Representation of a Tour 31

4.2 Graphic Description of 2-opt 32

4.3 K-opt Selecting Next Incoming Arc 34

4.4 Example of 4-opt 34

4.5 Algorithm Flowchart Section 1 37

4.6 Algorithm Flcwchart Section 2 38

4.7 Algorithm Flowchart Section 3 39

5.1 Multiple Optimal Solutions 42

5.2 Least Squares Fit of Size vs. Solution Time . . 43

A.1 Sample Distance Matrix 47
A.2 MATUTL. RUN Main M enu47

7

g

I. IN7EODUCTIO

Cne of the U.S. Coast Guard's missions is maintaining

ails to navigation in the waters of the United States.

These aids require periodic servicing to ensure they are on

station and they are showing their proper watch characteris-

tics. The responsibility of maintaining many of these aids

falls on the Coast Guard's fleet of buoytenders. A buoy-

tender in its area of responsibility may have as many as 200

aids which it is required to maintain.

The buoytender has scheduled ATON runs (Aids TO

Navigation) and emergency outages it must handle during a

4 fiscal year. An emergency outage occurs when an aid is

reported by a mariner to be showing improper characteris-

tics or is missing from its station. These outages are

handled shortly after they are reported. Several times

during the year the buoytender plans an ATON run to handle

the periodic servicing of aids, to ensure that they maintain

theLr prcper watch claracteristics.

Prior to a scheduled run the tender will receive SANDS

forms from the unit's district office for each of the aids

which are due for service or relief. SANDS is a database

where information is kept on a district's navigational aids.

he district's aids to navigation branch identifies aids

which are due for service or relief and notifies the tender.

The district provides a list of aids which need to be

serviced during the scheduled run and of work needed on each

aid. The tender then makes plans accordingly to schedule

and complete the work.

The number of aids serviced on a particular scheduled

ATON run may be as few as 5 (a day of local work) to as many

as 70 (an extended four-week tri. servicing the west coast

8

PREVIOSPG
I [~IS BLANK m-

4 LIZ~e bul

of Alaska from the Aleutian Islands to Point Hope). Ihe

maintenance of the floating aids and fixed structures
entails the travel of the tender from aid to aid. The tend-

er's Cperations Officer usually plans the initial route to

be travelled to service the aids due for routine maintenance

and presents his propcsal to the Commanding Officer, who may

then modify this prozosal.

There are several factors which go into the decision

process to produce the desired route. Two of these factors

are (1) which aids are scheduled for service, and (2) the

distances between the aids. The desired route is usually

the route of shortest distance which visits all the sched-

uled aids and returns the tender to her point of origin.

This problem is a classic problem which operations analysts
- normally call 'the traveling salesman problem.' Present

route selection methods are (1) traditional or previously
followed routes and (2) routes created by Operations

Department personnel sitting down with chart aad rule and

selecting a route.

It is the intent of this thesis to propose and izplement
a computer assisted approach as an alternative method for

the tuoytender route selection problem. The succeeding

chapters of this paper contain a discussion of the trav-

eling salesman problem and how it relates to the buoytender

problem, a brief survey of possible solution methods to the

problem, a description of the solution process of the

selected method, and the results of the route selection

program with conclusicns.

9

0

~II°. L4T_R 2F TH PRO_13_:E

In this chapter the principles of the traveling salesman

problem will be presented and it will be shown how the buoy-
tender problem can be described as a traveling salesman

problem. The discussion will include a general description,

definitions about solution methods, and the solution

requirements of the problem. Further, a description of the

computing hardware on which the selected solution method is

programmed is provided. This provides an idea af the capa-

lilities of the hardware since the hardware has a bearing on

the selection of the solution method.

0
A. DESCRIPTION OF THE TRAVELING SALESMAN PROBLEE

A brief description of the traveling salesman problem

(or ISP) is as follows. A salesman has n cities he must

visit. The salesman starts in one of the cities and must
travel so that he enters and departs each of the other

cities only once. Upon visiting the last city the salesman

will return to the city from which he originally started his

travels. The desired solution to the problem is the route

the salesman can traverse which is of the shortest total

distance possible.

It is usually assumed that a TSP can be associated with
some n by n listance matrix. The elements of the matrix,

dl, are distances from city i to city j, (i1,...,n),

(j=1,...,n),and where dji_-oo, il,...,n. The traveling

salesman is not allowed to leave city i and to return to
* city i in his tour.

A TSE can be associated with a graph, also. A city

which the salessan must visit is represented by a node in

10

6:i

this graih. There is an arc (i,j) in the graph with length

dij for each node.

A distance matrix may be classified as sparse or dense.

A sparse matrix will have a majority of its entries equal to

infinity. The corresponding graph is sparse since it has

few edges. A dense matrix is a matrix where a majority if

not all its entries, with the exception of the di 's, are

less than infinity. The number of possible permutations of

cities for a dense matrix is of order (n-l)!. Computation

time and memory required for solution by total enumeration

grows rapidly with the size of n due to the large number of

possible solutions, each permutation of cities being a

feasible tour and a possible solution.

The distance matrix used by the buoytender for route

selection will be a dense matrix. With the large number of

permutations or possible solutions to the problem, some

means other than total enumeration must be used to solve the

tuoytender Froblem.

The traveling salesman problem may be broken intc two

classes, symmetric ard asymmetric. In a symmetric TSP the

dij =dlL for all i~j, while in an asymmetric TSP this need

not be true. Further, a TSP may or may not be required to

satisfy the triangle inequality. Consider three cities i,

j, k. The triangle inequality states that

dj !5 dZK + dki for all i~j~k~i.

Tie ccnditions which make a ISP asymmetric, the unequal

distarces between cities, may cause the problem to violate

the triargle inequality.

The TSP, both symmetric and asymmetric, belongs to the

N? Complete class of problems [Ref. 1,2]. This has one

4 major im;lication with respect to the complexity of solving

the TSP: no polynomial-time algorithms are known or seem

likely tc be devised for exact solution of the TSP. Only

exponential-time exact algorithms are known.

11

*,

There have been many algorithms proposed for the solu-

* . tion of the TSP, each algorithm showing some advantages and

disadvantages to its method of attacking and solving the

problem. Several of the published algorithms are tailored

to a particular size of TSP. The TSP may be categorized by

size as either small or large. A reference could not be

found in the literature which would give a hard numerical

value by which the size of a TSP could be judged, but a

small TSP is generally considered to be less then 15 cities.

A large ISP is often considered to be in the neighborhood of

45 or more cities. There are solution methods which solve

the TSP exactly for small up to large problems. There are

some methods which can solve some large problems exactly,

but as a rule large problems are solved with heuristics or
approximate methods.

The circumstances of the buoytender problem satisfy the

conditions of a class of the traveling salesman problem.

The buoytender problem can be characterized as a symmetric

TSP, i.e., the distance traveled between any two aids is the

same regardless of direction travelled by the tender. The

size of kuoytender problem will vary with the number of aids

scheduled to be serviced on a specific ATON run; therefore

the solution method for the buoytender problem will have to

handle bcth small and large problems.

The triangle inequality as applied to the buoytender

problem holds true, lut how it holds needs some explanation.

With all distances positive, the triangle inequality states

that given three points A, B, and C, the distance from A to

C must te less than or equal to the distance from A to B

plus the distance from B to C (see Figure 2.1). In the

0 kuoytender's problem the straight-line distance from A to C

may te less than (A to B) + (B to C), but some situations

will require that A to C equal (A to B) + (B to C) (see

Figure 2.1),
dAC = dAS + doc

12

0<.

I I

I - /P

L P

Figure 2.1 Triangle Inequality / Obstructed & to C Path

The buoytender may be unable to take the direct route from A

to C due to shoal water or an obstruction. To get from A to

C the tender will have to take the routes A to B and B to C.

This is not an unusual situation for buoytendecs since the
aids being serviced cften mark shoal water or obstructions.

B. DESCRIPTION OF TEE SOLUTICS REQUIRERENTS

There are many proposed solution methods to the TSP and

they may be divided into two groups: exact methods and
approximate or heuristic methods. An exact method or algo-

rithm has the property that upon termination of the algo-
rithm, the user will have the best possible or global
optimuz solution. Heuristics or approximate methods, on the

other hand, terminate with a local optimum solution or the

best solution found thus far. This local optimum solution
may be the global optimum but usually there is no proof that
the global optimum has been found. Heuristics or approxi-

mate methods solve by checking a subset of the numerous
possible solutions and terminate when the subset has teen
searched for the best answer it contains, a specified time

13

Si"

• • • . - . .. :.,' - ,.- .-. ., ?. ?... - . . i. .. -' i . -

limit for the run has been reached, or the memory capacity

of the computing machine has been reached.

A further consideration in selecting a method to solve

the TSP is that there should be very little interactive work

for the user. The user interactive work necessary to

operate the program should be understandable to a majority

of the intended users, who in this case are the buoytender's

Operations Officer or Navigator, and Quartermaster

personnel. By requiring the interactive work to be minimal

and simple in nature the possiblity of operator introduced

error will te reduced. Further, if the interactive work is
of a simple nature, the program will be useable by a

majority of the intended users without extensive training.

Although it is desired to obtain the global optimum, it

is not mandatory. The computer route selection method is to

be a tool used in planning, and the exact solution is not

critical to the operation of the buoytender. By using

heuristics, computer time and memory may be reduced since a

heuristic generally searches only a subset of all possible

solutions. If a computer solution can be produced which is

better than the traditional route or a route produced by

hand calculation, then a goal has been met, that goal being

reducing the total distance traveled by the tender thereby

saving fuel and time. The computer solution is then a

viable alternative tc be added to the present methods of

route selection.

C. CCHPUTING HARDWARI

The computer on which the selected solution method is

programmed is the Coast Guard's C3 Standard Terminal. The
reascn for selecting this computer is that it is presently

being installed throughout the Coast Guard as a primary

unit-level computer. Most intend users should have access

to a C3 Terminal.

14

The C3 Standard Terminal is a standalone 16 bit micro-

computer. The terminal comes in two basic configurations,

the Integrated Work Station (INS) and the Application Work
Station (IRS). The IWS is a master or standalone unit

equipped with a hard disk and 8 inch floppy mass storage

system, a 300/1200 baud modem, a printer, and one of three

RA memory configurations - 256k, 384k, or 512k. The IWS

may he programmmed in BASIC, FORTRAN, COBOL, Pascal, and

Assembly. The AWS is more limited in its capabilities than

the IWS. The AWS is limited to 256k RAN and must be

networked to a IJS station to access the peripherals. With

a program in RAM the AWS will operate as a standalone

computer, but does not have the power or computational speed

of the INS.

0 The solution method selected for programming will have

to perform within the limitations of the C3's memory. The

C3's BAN memory will be a critical factor in selection of

the solution method. Since the computer is a purchased

standalone and not a leased system, CPU time should not be a

critical factor. It is still desired, though, to keep CPU

time from becoming excessive since the computer is also

needed for cther work. The computer could be allowed to run

overnight (off duty hours) for large problems, and therefore

a soluticn method requiring more than 12 hours to provide an

acceptable solution would be excessive. A solution method

which provides an answer in under an hour could be run

during duty hours with very little impact on other users,

particularly if it was run on a slave terminal.

In the next chapter we take a brief look at some

suggested sclution methods for the TS? and their applica-
0 bility to the buoytender problem.

15

IMI 2ffflu QF §QLVZIQ! §LH22 EQi n;HZ XSP

In this chapter a brief survey of the general solution

methods for the TSP and some of their associated algorithms

will be presented. The number of algorithms proposed for

solving the TSP is extensive. To present all of the avail-

able algorithms or to discuss them in detail is worthy of a
dissertation in itself. This survey of solution methods is

made because a combination of a couple of the methods will

he used to solve the buoytender problem. This survey will
be brief in nature Fresenting the general solution methods
and briefly describing some of the more popular of published

algorithms which fall under these solution method headings.1

The solution methods may be classified under four

general .ea.ings. These headings are Tour Building, Subtour
Elimination, The One-Tree Formulation, and Tour Improvement.

These headings describe how the traveling salesman problem

is approached.

A. ICUR BUILDING

Tcur Building solution methods to construct a tour using

the n nodes and the available arcs in the problem. Tour

Building contains both exact and approximate algorithms.

Some of the approaches taken by Tour Building Algorithms to

solve the TSP are dynamic programming, 'branch and bound'

methods, and tour construction heuristics.

'Three excellent articles [Ref. 1,3, 4] have been
publis.ed which describe the TSP, discuss general solution
methods and review many of the algorithms which sclve it.
These three articles review the research conducted on the
TSP from the mid 1950's up to 1983.

16

Held and Karp [Ref. 5] present a dynamic programming

approach which is suitable for small problems and can be

modified to an approximate method for larger proolems. The

dynamic programming approach rapidly consumes available

memory as the size of the problem increases. Due to memory

limitations, the algorithm Held and Karp presented is exact

only up to 13 cities. They also present a dynamic program-

sing method which approximates the solution for larger prob-

lems. 7he approximation is done by partitioning the large

problem into several smaller problems or subproblems, each

subproblem containing 13 or fewer nodes. Each partitioned

subproblem is solved for its optimal tour resulting in a set

of subtours for the original problem. The subtours are then

broken and linked to each other to provide a tour for the

4 original large problem.

Little et al. [Ref. 6] present a branch and bound

method. The algorithm branches on whether a particular arc

is included or excluded from the tour being constructed.

This tranchinj partitions the solution set containing all

tours into subsets. Each arc in the total graph can be

associated with s,,me subset of tours, and the idea is to

find the subset containing the optimal tour. For each

subset of tours, a lower bound is computed for the tours

within the subset. The tour is constructed as arcs with

favorable lcwer bounds are included in the tour. The algo-

rithm continues branching and computing lower bonds until a

subset is found which contains one tour and this tour's

distance is less than or equal to the lower bounds of the

other subsets of tours. This tour will be the optimal solu-

tion to the TSP. The memory required for this technique may

he extensive and computing time grows exponentially with the

size cf the problem.

Many tour construction heuristics have been proposed.

Rosenkrantz, Stearns, and Lewis [Ref. 2] and Golden et al.

17

.;..

[Ref. 4] review several of these heuristics. rhe two most

popular forms of these heuristics are the nearest neighbor

algorithm and the insertion techni-lues.

The nearest neighbor algorithm operates exaztly as its

name implies. A starting node is chosen and its nearest

neighboring node is selected as the next node in the tour

.eing constructed. The algorithm then iteratively selects a

node not yet in the tour which is nearest to the previously

selected node to enter the tour. This selection continues

until all noles have been selected and then the last node

selected is connected to the first node to complete the

tour.

The insertion techniques include the nearest, farthest,

cheapest, and arbitrary insertion algorithms. Insertion

techniques begin with a starting node and select the nearest

node to create a subtour. The algorithm iterates selecting

a node which is nearest to or farthest from any other node

in the subtour, or arbitrarily selects the next node to

enter the tour. This selected node is then inserted into

* the subtcur wherever it provides the least increase (or in

the case of the farthest, the greatest increase) in distance

. in the new subtour. These heuristics generally provide a

suboptimal solution to the TSP, but they have the advantage

cf being very simple to implement and have very fast solu-

tion times with tinimal memory consumption.

B. SUBTOUR ELININITICY

The Subtour Elimination solution method [Ref. 1] attacks

* the TSP by solving an n by n assignment problem with the

added constraints that the final solution must contain a

* cycle and the cycle cannot be of size n-1 or less. The

number cf integer constraints necessary to eliminate all

subtours or cycles of size n-1 or less is enormous.

1
~18

Therefore, the initial solution is generally found using a

'relaxed' form of the assignment problem. The relaxed

assignment problem cmits the subtour constraints in its

formulation.

Mathematically stated the relaxed assignment problem is

Min j Exii di

S.T. xj3 =1

. xLj =1 j=1,2...,n

where xqj =0 or xzi =1

The solution to the relaxed assignment problem provides

the initial lower bound on the optimal tour length. If the

optimal assignment sclution is a tour then it is an optimal

soluticn to the TSP. If the assignment solution is not a

tour then there exist subtours which must be removed until a

single tour exists. If a subtour exists with k arcs in the

subtour, then there are k possible subproblems to which the

problem may branch. These k subproblems each have an addi-

tional constraint, the constraint for subproblem i

(i=1,...,k) being the exclusion of arc i from the problem to

eliminate the subtour. Instead of branching into k subprob-

lems the approach is to branch into two subproblems. An arc

is selected from the subtour and the exclusion of this arc

becomes a new constraint in one of the subproblems while

inclusion of the arc in the tour becomes a new constraint

for the alternate subproblem. The modified assignment

problem is solved again for each of these new constraints

and provides the lower bound for its respective branch. In

this way only the necessary subtour elimination constraints

are added as needed to the assignment problem, rather than

attempting to add all possible subtour constraints to the

initial assignment problem. Ideally the branch solution
subset with the lowest bound is then selected to te tested

19

S°

.

-.-

to see if it is a tour, and, if it is not, the prcblem

branches again on the lowest bound. This branching

continues until all subtours have been eliminated and a tour
is found which has a distance less than or equal to the

lower bounds of the cther solution subsets.

There are two basic methods for searching the tree

created by the branch and bound process. One method is a

breadth-first search. As the program is branching and

computing bounds, a tree is created with leaves or terminal

nodes. A breadth-first search requires storage for the

soluticns of each leaf and a search through these leaves for

the next subproblem on which to branch. This requires

extensive, usually exponential, storage. Branching at the

lowest bound requires a breadth-first search. The second

method for searching the tree is a depth-first search. The

depth-first search is a more localized approach to handling

the search. The depth-first search need only store the

immediate sclution while searching a branch. If during the

search it is found that no further branching is possible

from the current node, the process must return to a previous

leaf to continue the search for the optimal tour. The

depth-first search lacktracks and recreates the previous

solution at that leaf. The depth-first search does not

require exponential storage like the breadth-first search,

* but it usually requires more computation time.

The subtour elimination method is described as being

exact. The subtour elimination method usually requires less

computation time than the branch and bound approach of

little et al. since the bounds obtained with the assignment

relaxaticn are tighter.

20

". , .~ .. .•". .,.,., .

C. TEE CNE-TREZ FORMULATION

The one-tree formulation was introduced and developed by

Held and Karp [Ref. 7,8]. The general method for the solu-

tion of the TSP begins with the construction of a minimum-

weight 'cne-tree.' If the one-tree is not a tour then an

integer linear program may be used to obtain the final solu-

tion.
To assist in the description of this solution method

several terms need defining. First a tree is defined as a

connected graph without cycles. A minimum-weight spanning

tree is a tree with ainimum total weight on its edges. A

one-tree is a tree to which one edge has been added yielding

exactly one cycle. A minimum-weight one-tree is a one-tree

with minimum total weight on its edges. Finding a minimum-

weight one-tree is a relaxed version of a TSP since the
soluticn to a TSP is a minimum-weight one-tree having every

vertex of degree two.
In the solution method proposed by Held and Karp

[Ref. 7] the algorithm begins by constructing a minimum-

weight one-tree. A minimum-weight one-tree can be can be

found by first constructing a minimum-weight spanning tree

through nodes 2 to n and then adding to the graph the two

arcs of least weight from node 1 (Ref. 9]. A minimum-

weight one-tree may also be constructed by constructing a

minimum-weight spanning tree through nodes 1 to n and then

add to the graph the next minimum-weight edge not yet used

from the distance matrix. If the one-tree constructed is a
tour (i.e. the one-tree's vertices are all of degree two)

then the TSP is solved. Otherwise, the one-tree must be

converted into a tour.

Integer linear programming is used to obtain an optimal

tour if the one-tree formulation does not satisfy a tour.

Held and Karp introduce the concept of a 'gap' function and

21

,0

then use a special integer linear projram to minimize this

function. In essence there is a transformation on the one-

tree variables which allows the integer linear program to

search for the optimal tour. Held and Karp suggested two

methods for optimizing the integer linear program, an ascent

method and a branch and bound method with the ascent method

embedded in it. Other improvements to the Held and Karp

method were suggested by Hansen, Krarup [Ref. 10] and Houck,

Picard, Vemuganti [ef. 11]. Bazarra and Goode [Ref. 12]

did further work on Held and Karp's approach using optimiza-

tion of a lagrangian dual in lieu of solving integer linear

program. They proposed a branch and bound scheme with subg-

radient optimization of the dual to transform the one-tree

into the optimal tour. The one-tree method as described is

exact and may require extensive computation time.

D. TCUR IMPROVEMENT

The Tour Improvement method assumes that an arbitrary

tour is available. The method operates by perturbing or

exchangirg arcs in the tour until a better tour is found.

The Tour Improvement method terminates when a better tour

cannot be found. in its simplest form, it is possible for

this method to check (n-1)1/2 arc exchanges for the symme-

tric TSP before terminating (i.e., it investigates all

availatle answers).

Dant7ig, Fulkerson, and Johnson [Ref. 13,14] proposed a

algorithm which starts with an arbitrary tour and uses

integer linear programming to improve the tour. The TSP is

transformed into an integer linear program and solved using

the simplex method. Dantzig, Fulkerson, and Johnson

[Ref. 15" mention that the number of constraints needed to

characterize the problem is 'astronomical.' Instead of using

all the constraints, they begin by using a relaxed version

0
22

0

of the problem and Ad constraints as needed to the integer

linear program to maintain feasibility. In their method
infeasibility appears as 'loop' or subtour. To continue
solving the problem a constraint is aided which removes the

subtour yet does not eliminate any of the available tours.

This algcrithm requires the addition of constraints during
the solution process to maintain feasibility. Several

researchers have suggested improvements on Dantzig,

Fulkerson, and Johnson's method for solution of the TSP.

[Ref. 16,17,18,19]

Croes [Ref. 20] proposed a heuristic whereby a subset of

all possible transformations is tested, a transformation

being the transformaticn of one tour into another tour. He

called these transformations 'inversions' because they

inverted the sequence of nodes in part of the tour to create
a possible improvement. Lin [Ref. 21] later describes Croes

'inversicn free tours' as 2-optimal tours and goes on to

describe k-optimality where k is some fixed number less than

n. The general idea is to exchange k arcs iteratively in

the tour while testing for improvements. Lin and Kernighan

[Ref. 221 presents a modified k-opt algorithm where k is not

fixed. In this algorithm k may vary from 2 to n. The

floating k-opt algorithm is also described by Christofides

and Eilon. [Ref. 23]

The advantage of the 'inversions' or k-opt solution

method is that for a given problem, the memory needed to

solve the problem is fixed. There are no constraints which

must be added to the problem, and the decision rule used is

simple. The k-opt method is exact, but may be terminated

before optimality is reached to provide a satisfactory

(suboptimal) solution. This generally reduces run time and

still provides a gocd solution to the problem. The k-opt

method may also be programmed to require very little user

interaction; in the best case the user need only enter the

23

distance matrix for the nodes desired in the tour. he

k-opt algorithm may require extensive computation time,

particularly if during solution k is found to be greater

than 2 on many of the iterations.

This chapter has presented a general survey of some the

solution methods for the TSP and some algorithms associated

with these solution methods. The next chapter will discuss

which of these solution methods were employed to solve the

bouytender problem. The buoytender routing algorithm will

then be presented and discussed in detail.

2

K

- 24

Sb

-| - .•

|!.

|. .

IV. BUOYTENDER ALGORITHM

This chapter will discuss the algorithm with which we

propose to solve the buoytender problem. The reasons for

the algorithm's selection and some background oa its devel-

opment will be presented, together with a detailed descrip-

tion of how the algorithm addresses the buoytender problem.

A. AlGOBITHM SELECTICN

The algorithm is a combination of two of the previously

mentioned solution methods in that it combines a Tcur

Building heuristic with a Tour to Tour Improvement

heuristic. The ccncept of combining a Tour Building

heuristic with a 2-cpt or 3-opt heuristic was proposed by

Golden et al. [Ref. 24] as a relatively fast computational

solution method which would provide an optimal or near

optimal tour. Their 'composite' algorithm is the foundation

on which the buoytender algorithm was developed.

The heuristics used in the buoytender algorithm are the

nearest neighbor algorithm and the k-opt algorithm. The

nearest neighbor algorithm is used to construct an initial

tour while a versicn of the k-opt proposed by Lin and

Kernighan [Ref. 22] is used to improve this initial tour.

The nearest neighbor and k-opt heuristics were selected for

use in the buoytender algorithm because very little interac-

tive work is required, the interactive work is simple, no

constraints need to he added to maintain feasibility, compu-

tational time is reasonable, and the algorithm operates with

a fixed amount of memory.

The tuoytender algorithm as presented requires very

little user interaction. The nearest neighbor algorithm

25

• .. . * .* o. . , . . -- .-- . . - . - . . *• < .- ,, * -

needs only the entry of the distance matrix for the prcblem

and the selection of a starting node. The k-opt algorithm
needs the same distance matrix and an initial tour. The

heuristics' decision processes will provide a feasible and

possibly optimal solution in a reasonable period of time.

The nearest neighbor algorithm was selected to construct the

initial tour because it is computationally faster than

insertion techniques, and provides a good initial solution

to the problem. [Ref. 25]

A critical factor in solving the TSP on a microcomputer

is the memory required by the algorithm used. The amount of

memory required for solution of a TSP of size n is fixed for

the nearest neighbor and k-opt heuristics. With known

memory reguirements for the heuristics, a program can be

4 developed tc fit the Coast Guard Standard Terminal. The

nearest neighbor algcrithm requires an n by n distance

matrix and an n arrary in which to store the tour as it is

constructed. The k-cpt algorithm requires the same storage

as the nearest neighbor plus a n by n decision matrix, and a

2n array for recording nodes selected for inversion in the

tour.

B. PROGBANKING THE AIGORITHM

The kuoytender algorithm was developed as a series of

modules which were then programmed as subroutines in the

operating program. The algorithm was programmed in FORTRAN
for operation on the Coast Guard Standard Terminal. FORTRAN

was selected because it is efficient and a majority of

programmers are familiar with it.

There are some differences between the heuristics in the

literature and the buoytender algorithm. The nearest

neighbor algorithm as used by the buoytender algorithm is

the same as outlined by Rosenkrantz, Stearns, and Lewis

26

A

[Ref. 2]. The k-opt heuristic used in the buoytender algo-

rithm is a modified version of the heuristic presented by
tin and Kernighan [Ref. 22]. There are three major liffer-

ences between the k-cFt in the bouytender algorithm and the

k-opt suggested by Lin and Kernighan. First, the Lin and

Kernighan k-opt heuristic selects all possible nodes which

will result in a shcrter tour before creating the improved

tour. The buoytender algorithm improves the tour by

exchanging nodes whenever a favorable selection is found.
This improvement-as-ycu-go procedure results in a simplifed

selection process for the next set of nodes to be tested.

Second, the Lin and Kernighan k-opt heuristic has an added

facility for 'limited backtracking' used when a particular

exchange gives an improvement of zero. The backtracking

procedure searches until a gain greater than zero can be

found which imprcves the tour. In the interest of short-

ening computational time, the buoytender algorithm does not

'backtrack' when a gain of zero is found, but instead treats

zero gain as no improvement and continues with the next

selection. The third major difference between the Lin and

Kernighan k-opt heuristic and the buoytender algorithm is

related to what Lin and Kernighan call 'reduction.' Their

heuristic, after producing several locally optimal tours,

checks fcr arcs which appear in each of the tours. These

'good' arcs are not allowed to be broken in further computa-

tions for other locally optimal tours thereby reducing the

number of links to be checked for improving the tour. While

decreasing run time, this procedure requires more memory and

is therefore omitted from the buoytender algorithm.

The huoytender algorithm can be divided into three basic

* operations. First, the algorithm selects a random sample of

k nodes, k<n. This random sample of nodes becomes the set

of starting nodes for the next major operation in the algo-

rithm, to create k nearest neighbor tours. The third

27

0

operation is to use the k nearest neighbor tours as initial

tours for the k-opt improvement. The best of the k-opt

improvement tours is presented as the solution to the

problem.

A further modification was made to the algorithm based

on some computational results obtained from use of an early

version of the algorithm. During programming of the buoy-

tender algorithm several benchmark statistics were obtained

from the program. Two of these statistics were the initial

tour distances produced in the nearest neighbor phase, and

the distances of the final tour solutions produced by the

k-opt phase of the algorithm. There seemed to be a rela-

tionship between the tour produced by the nearest neighbor

phase and the improved tour produce by the k-opt phase. A

least-squares linear fit of the initail tour distance vs.

the final tour distance was done for four data sets. In

each case the fit prcduced a positive slope. This implies

for a relatively large nearest neighbor tour, the final tour

from the k-opt phase will be relatively large. A relatively

small nearest neighbcr tour will produce a relatively small

tour from the k-opt phase. Using this information the buoy-

tender algorithm was further modified to reduce computation

time without compromising too much of its ability tc produce

optimal solutions. For a set of k nodes, k<n, the nearest

neighbor algorithm provides k initial tours. The set of k

nodes is selected at random from the population of n nodes.

Then for a set of L ncdes, L<k, the k-opt algorithm is run

to obtain L final tours. The set of L nodes are drawn from

the k nodes which produced the L shortest initial tours.

The shortest final tour from the L final tours produced by

the k-opt phase will be the algorithm's solution to the

problem. The final version of tae algorithm has a greatly

reduced operating time over the initial version.

28

P°

0°.

".. ••.+..- . ."-"---."----....-" ".'------------.--".-'.-.---.--"-.--.-."--.-.--'-- "... ''..',+.+'..+.+'--•-.-.-.

C. AIGOSITHM DESCRIPION

In this section, a detailed description of the buoy-

tender algorithm is given. In this description references
will be given to the irogram subroutines so that the reader

may associate the portion of the algorithm under discussion

with its operational counterpart in the program.

The buoytender algorithm begins by reading a file from
mass storage containing the number of aids (nodes) in the

problem, the distance matrix, and the names of the aids

(subrcutine OBTAIN). A program MATUTL.FOR, which assists

the user in creation of this data, can be found after the

listing of the tuoytender route selection program,

ROUTE.F 0.

After obtaining the data the algorithm selects a random

sample of nodes, based on the size of n, from which it will

create tours (subroutine NODE). The function which selects

the size cf the randcm sample is

Sample Size = 5 + r2(Log(n-

The function is designed to capture almost the entire popu-

lation for testing when the problem is small and to capture

only a small portion of the population being tested when the
problem is large. This produces a sample size which

increases the probability of obtaining the global optimum

when the problem is small yet produces a sample size which

will maintain reasonable computation times when the problem

is large.

After determining the sample size, a random sample of

nodes is taken. Since there is no random number generator

for FORTRAN installed on the Coast 3uard Standard Terminal,

a pseudo-random number generator was added to program (func-

tion RANDOM). The coding for the generator comes from

Wichmann and Hill [Ref. 26] ; it is described by its

29

4 S

-~ V. -.-

authors as an efficient psuedo-random number generator

having a cycle length of 2.78 x 10 m3 . Nodes are sampled at

random without replacement from the integer population of 1

to n for use as starting nodes for the nearest neighbor

phase.

The algcrithm then moves into the nearest neighbor phase

(subroutine NBR). A tour is created for each node in the

randcm sample, with the node from the sample as the starting

node of the tour. T.e algorithm selects the nearest node to

the starting node for the next entry in the tour construc-

tion. The algorithm then iterates selecting a node not yet

in the tour wkich is nearest to the previously selected node

as the next entry in the tour. This process continues until

all nodes have been selected, at which time the last node is

connected to the starting node to complete the tour, and the

tour distance is computed. After all the initial tours have

been constructed they are ordered by their total distances

from shortest to lcngest. The five shortest tours are

retained for possible improvement in the k-opt phase.
A decision matrix is created which designates which

distance arcs in the distance matrix are presently members

of an initial tour (subroutine MARKD). The algorithm then

proceeds to step through each node of the tour testing it

for k-optizality.

The tour is 'prepared' at each node to be checked for

k-optimality (subroutine TRPREP). This process simplifies

some of the later operations. Here, it is helpful to

consider the tour as a circle with n postions on its circum-

ference (see Figure 4.1), and to let positions on the

circular tour be denoted by p(i) where i=1,...,n. A node in

the tour is represented as a position on the circle. TRPREP

places the starting node in p(1) and places the remaining

nodes in the tour at p(2) through p(n) where (i) is the

node's pcsition in the tour.

30

Vn.

jp

Figure 4. 1 Circular Representation of a Tour

Since floating k-cpt algorithm is in essence a series of

2-opt iterations a description of the simpler 2-opt prin-

* ciple will be presented first. Figure 4.2 shows the 2-opt

principle in graphic detail. In Figure 4.2 (A), the tour is

represented in circular form. The tour is now perturbed to

try and find an improvement. To perturb the tour in the

2-opt procedure, two arcs ill be broken in the existing

tour and two new arcs will be selected as incoming to form a

new tour. This provides a gain function which can be used

to check for improvement. The gain function is

G ,(broken arcs) - %0(incoming arcs).

If G is fositive this set of arc exchanges will improve the

tour.

Tc perturb the tour, one of the arcs incident to node

being checked for 2-optimality must be broken or removed

from the tour. In the buoytender algorithm the node being

checked for k-optimality will always be in p(1) of the

circular tour and the arc being broken will always be

Sbetween p(l) and p(2) of the circular tour. An incoming arc

must then be selected to replace the broKen arc. This

incoming arc must he selected ..rom those arcs with a

starting node which is the same node as the end node of the

31inoigar ut-eslce -Ecr ths arc wih

02

IA C

8 33

-747

(C) Cicuiag ArSlte (D) Serng frcIncomArc Brke

'7 7

(E) Feasile Arc Sectned (F) Circula initourroe

07
P-j

is in general the shortest available arc, but may be any of

the available arcs which maximize G. This subtour must be

broken and another incoming arc must be selected so as to

reconstitute a tour. Therefore, one of the tour's arcs

incident to the end node of the first incoming arc must be

broken. The end node in Figure 4.2 (C) is at p(7). There

is only cne of two possible tour arcs which may be broken to
allow the incoming arc to become part of the tour. Figure

4.2 (D) shows the selection of the wrong incident tour arc
for removal. The breaking of this arc and the subsequent

reconnection to the ncde being checked for 2-optimality does

not result in a tour. Instead, two subtours are created

giving an infeasible situation. Figure 4.2 (E) shows the

breaking of the proper incident arc and subsequent reconnec-
tion to the original node to create the 'improved tour'.

Also notice that some of the arc directions in the original
tour must be reversed to provide a consistent direction of

movement through the tour. Reversing these arc directions

is the same as inverting a seluence of nodes in the tour.

The result is shown in Figure 4.2 (F) as a new 'improved'

circular tour.

Ihe 2-opt procedure is carried out using each node in

the tcur as the starting node checked for 2-optimality. One

interation of the 2-opt procedure through all n nodes will

produce a tour which is 2-optimal.

The k-opt algorithm is very similar to the 2-opt proce-

dure described above. Instead of just reconnecting the tour

as the 2-opt procedure does (p(6) to p(l)), the k-opt checks

to see if another incoming arc, starting at the end node of

the last broken arc, can be selected to further improve the

0 tour (Figure 4.3). The procedure interates until no further

improvement can be fcund. A k-opt, using an example with k

equal to four, might look like Figure 4.4 The floating k-opt

algorithm has the ability to vary k during the k-opt

33

0 - " . ' . • ' . ' . i " . .i ' .- -

- - - . t

e 3

-7

Figure 4.3 K-opt Selecting Next Incoming Arc

Figure 4.4 Example of 4-opt

solution process. Ihis is more desirable than fixing k in

the solution process. For example, if k were fired at four,

the algorithm can only check four arc exchanges for improve-
ment but the problem may need a five arc exchange to produce

the optimal solution. By allowing the k-opt to vary k, the

probability of the algorithm finding the optimal solution is
increased. The floating k-opt is bounded between

2-optimality and n-optimality. The k-opt cannot be greater
than n-optimal because an n-opt exchange creates the optimal

tour.

34
34 .

I,

S -. •
- ,, . ,, ". • ". ,. , . , ... - ., . , .'.. - ', , ., . -

The k-opt procedure in the buoytender algorithm operates

by checking each node in a tour for k-optimality. The algo-

rithm, using subroutine TRPREP, creates the circular tour
for the node being checked for k-optimality. The circular

tour is Frepared so that the initial arc being broken will

always be between p(l) and p(2). The algorithm checks the

circular tour at the starting node for k-optimality. If no

improvement can be made breaking the first arc between p(l)

and p(2) then the circular tour's direction is reversed

(subroutine REVTOR) so that the alternate incident arc is
placed between p(l) and p(2) of the circalar tour and this

tour is checked for k-optimality.

The breaking of the arc between p(l) and p(2) requires
an inccming arc to replace it (subroutine SELCTY). The

algorithm selects the five shortest available arcs which

originate at position two of the circular tour and terminate
at ancther position on the circular tour. The arc from p(2)
to p (-3) is not available since it is already in the tour,

and the arc from p(2) to p(1) is not available since it is

the arc just broken to improve the tour. For each of the

selected incoming arcs another arc must be broken to elimi-
nate a subtour (as in the 2-opt procedure). It is then

necessary to reconnect the ars to reconstitute the tour.

This results, for each of the selected arcs, a set of two

incoming arcs and two outgoing arcs. Using the previously

defined G, each of the five sets of arcs is checked to see
which maximizes G. If G>O then the exchange or inversion is

made (subroutine ADJTCR), otherwise no exchange is made.

If an exchange is made the algorithm goes back and

searches for a new incoming arc from the end point of the

last broken arc. Subroutine ADJTOR has inverted the tour so

that the last arc used to reconnect the tour is now between

p(1) and p(2) of the circular tour. Subroutine SELCTY is

again used to select the next best available incoming arc as

35

. * ..

described above. The algorithm interates through selecting

an incoming arc and inverting the tour as long as improve-

ment, i.e. positive gain, can be found.

When improvement can no longer be found the direction of

the tour is reversed at the last node where improvement was

found, and the tour is tested again for possible further

improvement. When nc further improvement can be found and

the reversed tour has also been tested, the algorithm then

increments to the next node in the tour and starts the k-opt

procedure again testing this node for k-optimality. Each

node in the tour is used as a starting node in the k-opt

procedure. When all nodes in the tour have been tested for

k-optimality the k-opt phase ends and the resulting tour is

stored.

After each of the five shortest initial tours have been

tested for k-optimality, the shortest of the improved k-opt

tours is selected as the solution to the buoytender problem.

Figure 4.5 is a flowchart of the buoytender algorithm.

The next chapter discusses the results of some test
problems solved by the algorithm and makes concluding

remarks about the algorithm.

36

SS

SA
T3

SS

DO~~ge

0 'PA~ 14. SiiOa

MARI

Figure~~~ 'FA6 NOorTh FlvMr Secton

IIRCI

3Q8U

K-.T .
- '

.. * PREPARE

00

NEwA&N

b~zr~),zr~~tKm 1)up5

V.aC
K~~ ~ ~O AigReS 4. lgthu lovcar Setin

F (G.W - LIM9

0AHA

V. PROGEA RESULTS AND CONCLUSIONS

This chapter will discuss some results obtained from

using the buoytender route selection program, including

results from an actual problem from the U.S. Coast Guard

Cutter BIACKHAW. All program results were obtained using
the Coast Guard C3 Standard Terminal. The chapter will

conclude with some observations regarding the bucytender

problem, the algorithm, and the test results.

A. EBOGEAM RESULTS

To program and test the buoytender algorithm it was
necessary to obtain problems with known optimal solutions.

Initially, a very simple and small problem with nine nodes

was created. This test problem's optimum tour is the most

obvious tour obtained by inspection of the problem since the

nodes are arranged in an almost circular pattern.

Connecting these nodes following this nearly circular path

results in the optimum solution. Several alternate tours

were checked by hand computation and were found to be subop-

timal. Therefore, the near circular path for this test

problem is assumed to be optimal. When the program was

tested with this test problem, the program produced this

hypothesised optimum solution with a computation time of 13

seconds.

With the knowledge that the program appeared to be oper-

ating correctly on tle initial test problem, further testing

was necessary to check the program's ability to solve other

problems. Since the tuoytender route selection problem is a

symmetric case of the TSP, the literature was searched for

test problems. Three articles [Ref. 5,20,27] yielded eight

I

.,.++'.. "... •..-. ..-'.-i ? -" . - i..'+ " ' ~~~ ~ " -+' +" '+'"+.... - - ". .: .-

symmetric ISP's of various sizes. These eight literature

problems ranged in size from 5 to 57 nodes with known

optimal answers. The program, when tested with these prob-
lems, produced solutions which ranged from the optimal to

within 3.5 percent of the optimal distance.

Another problem was created by the random selection of

70 points on a Euclidean plane. A distance matrix was

computed for these 70 nodes and this problem was solved by
the program. The problem's optimal solution is not known,

but the problem was run to ensure the program could handle

the maximum problem for which it was designed, and to

produce a sample solution time for this maximum sized

problem.

With evidence that the program was solving test prob-

lems, a further test was conducted using an actual buoy-

tender routing problem, with data provided by the U.S. Coast

Guard Cutter BLACKHAW (WLB-3 90), homeported in San

Fransisco. The aids to navigation run data was for a trip

scheduled from 9 April 1984 to 16 April 1984. With the

experience and historical data this vessel has availakle

from servicing these aids for many years, it is hypothesized

that the route which was scheduled for this ATON run would

be optimal or nearly optimal. The planned route for the

ATON run had a distance of 455 nautical miles. when this

problem was entered and solved by the buoytender program,

the sclution was also 455 nautical miles. Although the

distances were the same, the scheduled route and the program

route differed slightly in their sequence for visiting the
aids. This difference may be attributed to the fact that,

as stated in Chapter II, the triangle inequality may be

required to be a strict equality on some of the arcs. This

difference is possible since the buoytender may, due to the

strict equality on some arcs, he reiuired to 'pass' a previ-

ously serviced aid to complete the route. Figure 5.1 shows

41

a five node example of this situation. This suggests there

may be several sequences of nodes which will provide an

optimal solution to the buoytender problem.

TABLE 1

Tours for BLACKHAV Problem

Route as Scheduled Route Produzed
by Boht4 byte Proram

1 YB ISLAND 1 YB ISLAND
2 MONTARA LWB1OA 20 MOSS LBB MLA
3 AN ISLAND LWE8 19 MONTRY BY LB B
4 SANTA CRUZ MP 18 MONTRY HBR MB
5 P PLANCAS LWB4k 17 PT PINOS LWB2
6 SAN SIMEON LPBI 16 PT CYPRESS LGB6
7 VON HELM R LGE& 5 P BLANCAS LWB4A
8 ESTERO BY GB1OE 6 SAN SIMEON LBBI
9 SOUZA R LGB 7 VON HELM R LGB4
10 UESTDAHL R LER1 15 ESTERO BY LIB
11 ET SANLUIS LWE3 8 ESTERO GB1OE
12 LANSING R B 14 MORRO BY LBBI
13 FT BUCHON LWE2 13 PT BUCHON LWB2
14 MORRO BY LBB1 10 WESTDAHL R LBBI
15 ESTERO BY LWB 9 SOUZA R LGB
16 PT CYPRESS. LGE6 12 LANSING R B

" 17 FT PINOS LWB2 11 PT SANLUIS R B
18 MONIRY HBR MP it SANTA CRUZ MB
19 MONTRY BY LB E 3 AN ISLAND LWB8
20 MOSS LBB MLA 2 MONTARA LWB10A
1 YB ISLAND 1 YB ISLAND

00

Figure 5.1 Multiple Optimal Solutions

42

-... . . .

I.'

TIBLE 2

Results of Test Problems

problem 8 Sclution Tour Dist. (Miles) Solution(ef.) Size Time (Sec) 2 p Qiy.

Karq 27) 5 5 148 148 100%Tes auth. 1 9 13 22.95 22.95 100%
Barachet(27) 10 17 378 378 100%
3LACKHAW 20 50 455 455 **
Croes (20) 20 52 254 246 103.25%
HeldKarp (5) 25 72 1711 1711 100%
Kar?(277 33 121 10929 10861 100.62%
Dan 2ig (27 42 188 705 699 100.86%
HeldKar (51 48 238 11847 11470 103.28%Kar ,(27 57 340 13367 12956 103. 17%
Max auth. 70 494 6791.07 unk. .unk

1 001% is. optimal; 103.28% is 3.28%greater than optimal.
*The distance is hypothesized to be optimal.

0
z
0

UAJ
Z

0

0

0 20 40 60
NUMBER OF NODES IN PROBLEM

Figure 5.2 Least Squares Fit of Size vs. Solution Time

Table 2 presents a summary of the eleven test prcblems

showing problem sizes, solution times, and the quality of
the solutions produced by the program. All of the run times
are reasonable by the criteria stated in Chapter II. The

largest prcblem, 70 nodes, had a solution time of 494

seconds, or roughly a little more than eight minutes.

43

07

KCcmputation times for the eleven problems were plotted

against problem size, as shown in Figure 5.2 A least-squares

polynomial fit of the data points is

Time = .584 + .62n + .0914n2 + .00000994n3

and this curve is also shown in the figure.

B. CCNCIUSIONS

The buoytender route selection algoritim provides

another useful way of scheduling ATON routes. As a tool for

the operator to assist in planning the route to be taken,

the program should produce optimal or near optimal solutions

for Erctlems up to a size of 70 aids. The user may accept

this route as is or may desire to modify the route based on

circumstances requiring human judgement. Appendix A is a

user's guide for the matrix utility and buoytender route

selection programs.

The tuoytender route selection algorithm, with the
nearest neighbor and k-opt heuristics, provides a quick and

satisfactory solution to a symmetric traveliag salesman

problem cn problems up to a size of 70 nodes. The problem

may have several routes with different seguences for

visiting the aids, lut the routes may all have the same

distance.

It is hoped that this algorithm will be of use to the

fleet of U.S. Coast Guard buoytenders. As a lecision aid it

may help the operators of buoytenders obtain optimal or

nearly optimal routes to service their aids, possibly saving

time and fuel.

I

I

. .

.' .' .," • -. .-.. .- ..- -,-, -.-...- -- .- - \ . < ,,' .

APPENDIX A

USERDS GUIDE TO PROGRAMS

The intention of this appendix is to provide instruc-

tions for the use of the buoytender route selection program

and utility programs. It should be noted that pricr to

using the huoytender route selection program, the user will

need to use the matrix utilities program listed at the end

of this appendix to prepare a data file.

The kuoytender route selection program and the matrix

utilities program are written in Convergent FORTRAN.

Convergent FORTRAN is FORTRAN 77 compatible. The programs

should be typed in as presented and linked to the operating

system. The Convergent FORTRAN manual has instructions

concerning compiling and linking. Recommended names for the

run files are ROUTE.RUN and MATUTL.RUN. Both programs will

operate cn either a IWS or AWS station with 264K memory or
more. The programs run about three time slower on an AWS

terminal than on an 1 7 terminal.

The user will be required to enter text and numerics

into the programs. All numeric entries are to be integer

entries (no decimal point) with the exception of the

distance entries. All distance entries require a decimal
point entry for proper input.

MATUTL.RUN is capable of entering problems up to a size

of 100 aids. ROUTE.RUN is designed to handle problems up to

a size of 70 aids. MATUTL.RUN allows the entry of a large

matrix of aids and includes a utility which allows the user

to select a subset of this large matrix for use in the

program BOUTE.PUN. This allows the user to type in one

large matrix and then create smaller matrices from the

larger as needed. This feature wiJl preclude the user from

45

Ii T~I

typing in a distance matrix every time he desires to run a

* problem.

A. USE CF MATUTL.RUI

The matrix utilities program is designed for creating

and editing data files which will be used in the buoytender

route selection program. A data file will contain the size

of the problem n, the distance matrix for the problem, and

the names of the aids to be visited.

The size of the Froblem, n, will be the number of aids

to be visited plus one. The plus one is for the port from

which the buoytender will start and end the ATON run.

To create the distance matrix some extensive plotting is

required. Most buoytenders have a set of trazklines tbey
regularly follow to visit their aids. In most cases these

existing tracklines will be sufficient to use in the

distance matrix. To create a distance matrix for entry into

a data file it is reccmmended the user use the format shown

in Figure A.1 . Distances should be computed in nautical

* miles and may range from .01 nm to 9999.99 nm. Figure A.1

is an example of a prcblem of size nine.

Since the problem is symmetric, the user need only

calculate and eater the distances as shown in Figure A.1
The matrix utilities will automatically complete the rest of

the matrix entries. The distance you should compute should

he the shortest possible distance from the row entry to the

O column entry. Using the example in Figure A.1 the entry in

row 3, column 6 is the shortest possible trackline frcm aid

A to aid E. Once tke entries for the distance matrix have

been prepared the user is ready to use HATUTL.RUN.

O MATUIL.RU4 has scme simple menus and some descriptive

comments to help the user. The menus require a numeric

response for the selection of an option. The first menu

presents the utilities available to the user, Figure A.2

46

* 4. .

U5

6

I HOePOAr 1 Sample5 Ds8.t41 1
2 i, A -(. 9.s 8. 1 O

- --

L4 - c a ha. 7.o 5.an t

5 Al b 3 list 2.

7 A, tb 5.'4

- AMi thi
2rcra

ql AD HI

Figure A.1 Sample Distance Matrix

1 - create a distance matrix
2 -extract a small matrix from a .farget matrix
3 - correct a. pre.viousli stored matrix
4 - create a arccpf ot a distance matrix
5 - ais names witl Their row numer in the matrix6 - exit this program
What is your selection?

Figure 1.2 RATUTL.BUN Main Menu

1. g._Ate_ I_ Distance m atrix

7his utility is for the initial entry of a distance

matrix into a data file. The user will be asked for the

size of the problem, the homeport and aids names, and the

47

6 .Z :' , %. : - . . ' . ". . , , . '- '. , ', 2. ; - - ,... ." ... _. _ -a - .-. , ...l. ,.n / n , a ,

distances. The size of the problem is the number of aids

plus one, for homeport. The utility will next ask for names

of homeport and the aids to be visited. These names will be

associated with a row and column number of the distance

matrix. The names are text entries up to a maximum of 15

characters.

The utility will next ask for distances. It will

ask fcr the distance from a row number to a column number.

If the user sets up the distance matrix as shown in Figure

A.1 he will be able to then just read each row across its

columns while entering the data. These distances must be

real numbers. The distances should be nautical miles and

may range from .01 nm to 9999.99 am. Since these entries

are real numbers tiere must be a decimal point in each

entry. If, for example, the user needs to enter two

nautical miles, he should enter it as 2. <return>. Be

careful with these entries; if a decimal point is not

entered the distance will be off by a factor of 100. For

quickly and easily entering data the numeric keypad on the

keyboard may be used and <next> may be used in place of

<return> to enter the data. If an error is made while

typing in numbers and <return> or <next> have not yet been

pressed, then the error may be corrected by using the back-

space key and retyping the number. If an error is made and

<return> or <next> have already been pressed, then the user

should acte the row and column number of the error and use

the correction utility to correct the entry.

When the user finishes typing all entries the

program will prompt for a filename in which the data will be

stored. This name may be up to 15 characters long. If for

some reason the user needs to end the terminal session

before the entire matrix is entered, data entry may be

stopped by typing in a negative distance. The user will

then be asked for a filename for the partial data file. To

4
; 48

6i

complete the partial data file the user must use the correc-

tion utility.

2. Zt a Matrix

This utility is designed so taat the user may choose

a subset of aids frcm a larger matrix. The utility will

create the Froper data file for a subset of aids.

The user should have an idea of all possible aids

which may be visited on a general buoytender run (i.e. the

spring run, the north run, the inside run, etc.). The user

should create a distance matrix using the create utility of

all aids which could possibly be visited on a general run.

Usually cnly some portion of these aids will be visited on

an actual run (for example on a particular spring run only
90% of the aids which might be visited on this run need to

be visited). In this case the user creates a matrix of all

aids which might be visited on a run and then each time this

run is scheduled the user can then use the extract utility

to quickly and easily create a data file for those aids

which need to be visited.

Before using the extract utility it is suggested the

user first use the list utility on the larger or initial

data file. This will provide the user a list of aid names

in the data file and present them with their corresponding

row number.
The extract utility will prompt the user for the

4 name of the data file containing the general run's aids.
The user is then asked for the size of the new problem

whereby the user enters some m, m less than n in the initial

data file. The utility then asks the user m times for row

numbers from the initial matrix. After m row numbers have

been entered the utility creates the new data file and askes

the user for a filename for this new data file.

49

I° ° % ° ' .° " ' " • ° " " ° " ° o -. ' . ,- . . -

.0

3. Correct a Previously Stored Matrix

This utility is to correct entries in a distance

matrix or tc complete a partially entered data file. The

utility has a menu which askes if the user wishes to make

single entry or sequential entry corrections. The single

entry mode asks the user for the row number and column

number of the entry desired to be corrected. The user then

is asked for the new distance and is returned to the correc-

tion menu where he may select to make another correcticn or

exit the utility.

The sequential corrections are similar to the entry

of distances in the _ceate utility. The user is asked for

the starting row number and starting column number where

corrections are to begin. The utility asks for the

remaining column entries on the starting row and then will

proceed to the next row until entries are terminated. The

utility automatically terminates at the end of the matrix or

the user may terminate the sequential mode early by entering

a negative number. If a negative number is entered it will

not appear in the distance matix. Terminating the sequen-

tial mode returns the user to the corrections menu for

another correction or to exit the correction utility.

Upon exiting the correction utility the user is

asked for a filename for the corrected file. This filename

may he up to 15 characters long.

4. Prepare a Distance Matrix for Hardcop

This utility is for preparing a hardcopy of a

distance matrix from a stored data file. The data files are

saved as sequential files, (i.e., the data files are a

string of numbers). This utility will construct a file

which will resemble a matrix. Due to the width and length

limitaticns of the printer and paper, the matrix is printed

50

°5.

. * . * . . * *,- - . . * . • . - .

in sections which will have to be cut and pasted together to

display the whole matrix. A hard copy of the whole matrix

will provide the user with a means of checking to see if

data entries are correct. If an entry error is found, the

matrix also helps the user to locate the row and column

number of the error.

The utility asks the user for the name of the data

file froz which a distance matrix is needed. The utility

creates the hardcopy file and then prompts the user to

obtain a hardcopy by using the FORMAT command to print out

file MATPFI.DATA.

5. list Aid Names

This utility provides a hardcopy of the aid names

from a data file. This may be useful to the user when using

the extract utility. The user is asked for the name of the

data file from which the list shall be made. The utility

then prepares a file containing the row numbers and their

associated aid names. The user is prompted to use the

FORMAT ccmmand to obtain a printout of LIST.DATA.

These matrix utilities are for assisting the user in

creating and manipulating data files and distance matrices.

A correct data file is necessary for the proper operation of

the buoytender route selection program, ROUTE.RUN.

B. USE CF HOUTE.RUN

The user of ROUTE.RUN is very simple once a data file

has been created. 7he user runs the ROUTE.RUN program and

he is Frcmpted for the name of a data file. The user is

then asked for the name of an output file for the results.

The program obtains the size of the problem from the data

file and will ccmpute an approximate solution time. This

approximate solution time is based on results from some test

51

S° ' "" -. . .

77
,. ,.°-.

problems solved by the program and it assumes the user has

version 8.01 of the operating system. If another version of

the operating system is used the solution time may differ.

After displaying the approximate solution time the

program reads the rest of the data file and proceeds to do
the necessary computations. The user, depending on the size

of the problem, will have just enough time to get a cup of

coffee before obtaining the solution. The solution will be

displayed on the screen and will also be placed in the file

previously named for results, from which a hardcopy may be

made. The user now has a possible route to take for that

particular aids to navigation run.

0

52

0

. . .°

.

._ ..

APPENDIX B

SINPIE OUTPUT OF EUOYTENDER ROUTE SELECTION PROGRAM

The solution for data file BLACKHAW.MAT

Total tour distance = 455.00

The tour is as follows

1 YB ISLAND

20 MOSS LBB MLA

19 MONTRY BY LB B

18 MONTEY HBR MB

17 PT PINOS LWB2

16 PT CYPRESS LGB6
C- P BLANCAS LWB4A

6 SAN SIM1EON LBB1

7 VON HELM R LGB4

15 ESTERO BY LWB

8 ESTERO GB1OE

14 MORRO BY LBB1

13 PT BUCHON LWB2

10 WESTDAHL R LBB1

9 SO UZA R LGB

12 LANSING R B

11 PT SANLUIS R B

4 SANTA CRUZ M3

3 AN ISLAND LWB8

2 MONTABA LWB1OA

1 YB ISLAND

53

LISTING OF BUCYTENDER ROUTE SELECTION PROGRIN

C M i IN PGP'm' ** m0YTFN'7FP POUTE SF'LFCTI!"I
ITMPLIC IT 2-iAP.A CTFP* 15 (A)

INTFGER IJLCPNMyDS~l5
CHARACTEP*15 N",~: M

CCIMY.C"'N X MF/ .r'~Y(7?)
CC M C'N /-:;rY/ N,IT0UP (71)
CCM.:ON /rDST/ TD(7:1,7?)
COMMON ,/ I NVT/ IT (14 -)
CO M. C N /0 1ST/ -_ (7 C, 7 1)
COM'MOr /FAYT/ ISTCR(l5,71)
COM MOCN /T-TP/ Ir-PTCP(14?)
C.ALL O3~KFAEOAEN
C PEN('-, FILE=C "'7, STArUS='?r:l' , FORM='FORMATTED'
TORDIS=9 0 10.0 .09
CALL NO0DE (F,NUM , AM)
CALL MR(NUY,S? Y,nrS)
DC 7 L=],,5

DC3J=4l
IT0UP (.. = 5TOP(L,J)

C ONT I NU E
CALL \r(

CALL T9P7EP(C)
R=C'

122' 1=1
I T M =TOrUF(1)
IT (2) =ITOUP (2)

CALL -17VTOP(R)
GOTO 12'

DO 14,,' J=1,\]
TDIS=TDIF+,(~()I~u(+

* ~14 CTDU

6 CcNT i~u
7 c (111T I t

5(4

r-r. " r . - t'I* -r r. * -7 .

.

ITCU?(I)=IS-OPR(I, I)

U\LL TPPPEPI)
..PITE(*,2) 7':A M F
.. RITE(3,2?) FN A:
WRIT (* , 3?7) T.. C l

FPITE (3, 3?) TOFIS
.Wv PITE 2~, '
WPTE (3, 21)

T. (. 3 ,3) (T T (7) I .' A(IFU T) ,I = l ,N + 1)
CLOSE (3)

2? 1OP AC(lX,'Th solution for .Tat3 file ',A)
* 3- EOMtIT(IX,'Cotl tour -istance = ' ,FP.2)

31 F1!'M.T(1Y, '7h tour is as follows:')
32 YO9 MT(lX, 13,EX,A)

E IN 0

I -E:I CD a AT F I (F,

EA L T I'! F

TCYO ,::YY'E/ 7. .E(T?)

r (70,7')

;,P1T5 (* , 0_)
P. (...4,, -E)r "V';. F

".PITr(*,]')
PE-?2(4,12, F?P= ') (f((1,J) ,J=l,":) , I= ,X:)

VA F-

-r -
rS. (4)

-".Tly , '"fl.:.r ;. .t fil, nv-e is t,. !i t . .. r: ?
' 7" Y: 1 7'. ,,-s ,:S .- n- A'T(1 v 'U'i n-.r for the tSUZ.9 '

55

Sl

, .: -., : --...: : , ' .: .--" , .: _ - .--; ' > .--: -_ 2 -; : ." ': : : .: : : : : .. , : > .: ,S : : -'

%" •

- ~. . I t w'ill .ikc~ -1nnrooxi-atL ly 2,n*

12 T(

is, F rror o ,

?OP! T (IX,r
END

C

IP'TECER~J~,TVPNVSW~5

I Y=2 51r7

17 2 J1 9Y

I F(ITEY P. EQ.- 0)Ct 3
F (I

T 12 T F'1 P. S (FX.) F

T P- , (ID

RIET

~ (~ .i7,'P p(I

- CDF. S L)

. C "2(. .'"

:c 2~ .]
TF 1T J) ~ T,)

* . "' . J*,IF* .UM S,'(5

~~ISC? (t , /R)D = X I, "

> 21 T= 1
*T

56

,,. , m .. , .OG (*5 5,.(*.)).
. S + ,+* .2..*S.

TFYPP=TD-(IsFopr,I) rEM p)
D22 J=2,

IT (T (I F£TOPL, I) ,J) .crT.TFMPO)!)C0T0r22

TLE*'t)7P (I STOP (L,I),J)
22 CODNTINUE

L I S (L) =7 TLC (L) +T FY"
D2r 23 F!=,%

21 C IN INri F
i S TOR (L , N+1I =I S -P. (L, I
D IS (L =DTiS (r, +f F,(T STO")P (, N), 1 70?(,1

12 C-ONT IN U E
2 225 NoVFX= 1

D ' 212 I=1,MfJM.-1

I F (D1 1 I L . rD S F, T+ I~ t C0 TO 1 =29 9 09

NC E X =

C£S13 (+1)=DIS (I

DC 22' J=l,M:+l
ITE'"P=I STOP (T+1,J)

I E % X. 1) + TO ,2)=ISO ,

ISTFCF (I J,J)=TM

C' M7 T T, P IP

Io -MQN /T rP/ C)P .(AK

DC 'I _ :=i,'

I TCUP ()IPTrT (J-"-l)

57

- - - - ~ ~~ -- F. TI -%-.x-r -WT - -

RF N

lD:TFCFR J,"

-."'M: /:T/ T'D(7 ~77)

T -, (J~ - I.?

' -(N - 'F .

7YCP, :, + I,)*, ~TOUJ)=

0~ -c

CC- D 2

2 P ;-T Srr77 T C , r

I'* \'U (7F.7

T 7

7 j = ., '*
,'758

0F

-- (T T .. C T-C-
P=7' 5 UF (I

GeTC(),IT''3(2W

S Y:(K) = I-CP F

S:~ () = 1 T- -P (F
Z LA (K) = S A K) -L (-1'2)- F jP(-I -

=F -

S-(EQ~o. 2)p=

TEM P=S [A" Il
CC L=l

* 1F(SL7A(K) .LF.TFNIP)C-C ;

c CL=K

I=L T 20L + STI

1T (2*1 +2 =F L: (7
P I : 2 I 2 = T ~ ~ .

E D

S3C,;7 1 NF .D JTR (I ,PC D
P:T7rEP TJ, 7? MC!

2 C~e~: /T7).L,/ q', I :,r 71)

/!,.VT/ IT(14)
7 i:/TvTF/ T TPTCP (14C'

1. I-TPTC- (-0OD+2-j) =ITC[:R(J)

DO F2 J=2, 7 '!C!

CZONT P11-

59

T7 IT T- .: t w 0
.

2? I7 Ip PET (72)(

-p.

lY 17p7'CZj W+ -*(Y17,

T C - 91 1 J=1*, - ,Y!7+I1 ,) -7 (7/ -c
i "I 'C (J ;)X= ITTCP)(J)26 9

I9 CCI XUEL-m)IY=I
I F 1

PTP' -~ X

r6

LISTING OP1 N&TRIX 97ILITIES PROGRAM

I XPL1 !T CP" PAC*l15 (A)
PNTECF.R IA"'S

* ~ ~ ; WITF.*l

WRiTF, 2)
W PITF.(* ,'3)

12 p"F -
PI TE (*15)

',7RITF(* ,6)
,P IT F(*,7)

TP IT

.;PI'rF(*I7)
* READ(*,1l) U'NIs

IF((ANS .. 1) .C P. (I N-5 T 1))OCT012
I(tA,1:. FQ. 1) CALL ~'P I X

I F(IANS. EQ2. 2)1CALL FXTPCT(
FE I ANS. FC. 3) C -1LL COPFCT()

I F (IANS. E-1. 4) CAU, '-!AT PP T
I FI I'NS . FQ. 5) CA)LL r, I S T
I F rANS. NF. r) C=rl2
STCP

I ECPMAT(LX,'Thjs is a set of utilities to be us~e with')
2 E()PY AT (lX, 'thc iro ,-rar 'CUTE. PUN. They ire to 1 '

FCP-AT(lX,'cr-.3-e ani1 -nanioulate 3 -1istance -t.tr ix.'
-CRYAT(/X' - ret a stmnrc? natr ix')
S F3F2T (X,'2 -e-ract i s.r"al.l rnatrix fr,-- a 13r-Tor -Ivitr iv'

ECP~T~lX '3 corect -r-iouslv storcA' natrix'
7 EOF T(Y' create a '3rc'oyo Ist!c -~i'

FP" -1 P7(IX,' 5 list name~s with th-air ro. in-~-e T 7trix')
9 ElP:KAT (IX,' - exit this 03m')r

* 3 DPA(/1X'Ta is your gelectio'? '\)
1'. CORY-AT(Il)

EN D

StJPPCJTIP'IF :'A7Trx()
I'YPL!CrT CHAPA27V=*lq (A)

* LEFAL DIST

61

* - ~0 314 1

PEAD7(*,3)I

WRITF(*,37) 7-,N
VRI TE£(* ,3?)
DO 39 I,-

DO 4 ' J=I+1,N
WPITF(*,41) I,J
PREAD (* ,42) DIST
D (I J) =D ST
DO 1 - L=1.,1 10-
CC"NTIt:'UF
D(J, 1)=rMST

I =N-1
4 17 CCNT INUF
39 CC!T I NUE

D D(N,N) =9 9C'9. Q0
2L L S T C P 1.

* 31 FCOE.YAT(,/1X,'HJow larqe is the oroble-?'\
32 Fr MAT (RN, 12)

3 FORY'AT(//1X,'InPut nam-s for ?horroort -in ! aicls')
*35 ?CP'4AT (IX, ' '7uT er' ,13 P I~ ? \

3 6 F C -MiAT (A)
7 F(C?!'AT (1X, 13,' 1 Y ',3, Matriy')

?OPY~ In nflut 4 is ta-ices Er n oint T to point V'
41 F) ('D is t an c f r o, n t '3;' to0 nt' 3

*. 5"N 42 TFT3,72)

* SU!IRCUTIN:F EXmTPC-To
INPLICIT C[1".P~CFP].-
I NTECEP N,", I , j, 1 F-o%:*1 2)

C. PA 1? A'T *1 9-l')A.(

'- IT F (11 I)
I;PTE , 12)

62

,. ITP (* , 1 4)

APrTE(L, 21) I

21 FOR.AT(LX,T, ' . Po-. nu-r-r Ero 3 n rctrlx: '\)
PRFAD (*, 13)1 now (I)
DO 22 i=I,':

ID(1,J) =I(4() ,J)
22 C "TIE

A SMN.M (I =A':\F (I P I)
22 C. INUE

.- 4 1% -
IC 2 ,; J=I'-

DC 24 1=1,M
D(I,J)="r)(IrnnvcJ).

24 2P:.T T":2E
*D F (J,J) =A"'KCI

CALL .TCPF"
FF ET P N

7 FP:.'A T(/oc,'T Frea te a s-1Ir natrix from your o-Tin')
1 lisC, 3(Y,'lstnc: .- trix, anter t- row nuTrzers Of')

12 FfTlPM1T(1, ra t attix -i ss hich 'r esire in the
1? SO'Pa.(IX,'s9:Iler r tri')
14 ECPMAT(//!]x,' 3t is t- sizs of thc sm1-r Patrix? '\,

1,-K...AT(lN,.I ")

! T Z rF ,IP

IM!PLIc1: CMA!!\rF.*15 (.)

FF'.LTSC

C rL CPT." I': ()
W.-RITE (*4)
1 " ITE (*,17)
W;PITF(* ,P1')

* EAD(*,In) *'.\5
1F(7 tANS:. PC. 3)C70?5 ,

I '. . 2)IA R S FP A) ccNroI F I A;,:S.. , 3)C 7 7-

,'PI ?t(*. 1

63

. . , :- . . _ .. , , , . . ,-_.. ,

Ir r r n rr. -r - r r r * . _. .. . C C. t. * _ .•. - . ; -. -.- . - . * * -

I. AW

I .

!D .) (2 (IC, 2) IC,'- .. 'F(*,?2) IP,IC,D(1PIC)

F 12
-,;R liT ft24
PF.Af(*,13) DE

D(IR, T) J,
,.. bDO %2 '.= 1IflD

I. F ",' i ST Ot:T v 1)C- C2

32 (D, IR):)DIST

I G IT+I 2

• 25 WPITE(*,2C)

F'" T * 27
FM" AT" (3' 13

.AD(*,12) IP

",7; 1T (* Ou' 1,v tr2-

PF)D(*,12) I'C
• DC 32 T--TTp:-1

F. D T 31 J:t.rs
v;""r(f ,2') il,J,D (I,J)

'" WR:PTFc(*, 24)

TF.7(,I) D1ST
IF231T.GF. . 1)GCT

0 2 2

!'r DO; ti s t=IcI n -r t

24I N

17 C~t;T ZN. n
D(JI, 3) :DUT

31C '" ..

IT~l 2
3E c:.LL ETCPFE(r") .

1? 2 C PM.AT (FT2,',)
1 T " MT Fis"

l-" CRMT(/I'<'Thi utlit isfor --orrz-ty-. or c r!Xti2'')
1: ? 2' YAT(1x,' r-viourflv stor .. Ait3 fi]b.')

* I- Fr?-M;-(ly, ']. - Singile .:ntri_ s 2 - Se .uonti-.. '=tmis')
I " F~7CP' 7(1X-," '2 - Fxit -:orrc:tions . , ',, '

19 Fr->'r. (i) ,
t:21 FC:'-:TcIx, ':'.9 nut-bof to correct '\)"

*" c. --. ,T(LV, 'Th)'un na.m ber to :zrr_,ct '\)L'
2.......:(,,, 'Des~nt listono?_ frot' ,I7, 'tO' 2,' : ' 477)

24 F !"'.(, Y";; :ist.,z.e = \):

t 26 F -' .T - , ' ,
.* n-' 3ntry/ of "- t'i, tyn e '.',-.'ti''e - i;'.n:')

64

"-< ?J' l'-"-:'-;.J-;;';. 1",1 .;-';-i -J .:- -.< ;..;-,;,.;%-) ,. .-- ,.' -', .-. v ,.-,'.,--.... .. -. -.,.v -. < .-. ,'.- I

27 1~.. t ,'Str t i nq. row nu'-r \
*2 h\(I Y, StartinD ccjI n r'i r'b

S FRMT P:2 Z ".7 RT(
Pr.LIC IT fP' ()

INT-CEP I,J,,,.,IS,IF,jS,jE-

lTP TE 4)

IT I "* 5)
' .P IT F * 6)

COPE' (3 ,rFlfE'ATPT.DtA' S\U-\E'Fl_'PY='lCR":1TTE7''

I F=~

JS=l

TC IJJE

P 7 F (- , 12)

J F =J F +

:F(.:.c7iM . 1-:

IF IE. GT. I F='

C LCSE (F
;';-P IT F (,1 4)

4 1C:. (Y, i s~itarn& ratr ix for ri-"t r .Youi~v 'i~':

L 2

65

rr w rr ,, .-. C r' "-; r . Z- - -I "-, * p.,. . -. * N - r . . - ,- ,~ . . : -,WV. . . . - - -

hr..

K- 4 CFAC %- F~'~?c 0! ra3n 1 to o tiin ~rint o f '"

SUeBOUTI' rT()
I PLICIT C'!-E'p'r
INTE ,

*-CC:.'Xc': /F.VS-/ .D(l ?,1r,)
CoO /XAM.E/ .-. 'AMF(l").

AR ITF(*, 1)
A RITE (* , I I)

VP IT? (* , 12)
R ITF(*, 13)

CALL CPTAIN(N)
CPEN(,FI[F 1='r,!7T T:',STATU='YW' ,FOP.=CPMA. '"
D 1 14 !=I, '-

,,R3I? (*,1;) I,AA YF(I
WITE(3,l5) T 5VA M

CLCSE (3)
RECUR::

' TOPYVNT(//IX,'Tnis routin.? will list i row nan ber a-')
ii ffC. AT(1X,'%i 4 ,nxr,. The list ',ill scroll >7 tfl2 '

12 ER IAT(lX, sc rEn 3n, save to 1i un-er fi

3A(IX,'L.S.T.ATA ys .OPYAT Co7,.r: for har ccnv')
15 FPM.,AT(YC,5X, A)

YP[,!- !{P:ACTFP*1E (.7)
I N TE[GE R ":, 1,3

Crt'Fl1 ~ EMCU: "'N /u'ST/ "D l? '", "

C,.... i''E/ A A F(1'')
* wP/IT-(*,lI)

PEAD(*,1lI) F-YAS'-'

O E'i(4 , 2,. 7. :- P,...........TTF_
1~~ 1) %T,)'.EAD(4,12, F - "T

- PF.'.D(4,l :., W'P:].4) (((1,J) ,J=1,)),I=i,)

CLF (4)

r ': F (?,* KQI'(1l,)
C LOS (it

!U' ?C P'ANT(/IlY, 'Th-'r :;nt file is t" .z 'ist~n: -atrix? '',
* : E2 U';T(is :.)

66

- - -. ,...._ _ _

12) C ':A d!

i.7 E
i_7 .'..\ p. LkJL1.2.

S"ITF(AF A , I,J

o"Mv ("\ / ':.. .'F le/ -...AM F(l2 ')
F R 1(*,.)

;T E (,12) F .?"r
JPF'"(UJILE=AF,vTAT:1s'MF,,' ,, F2PM,.=-FOPMATTW- 2 ')

7F V (E, 11, 1,2 s v -
,crr, 1A.., E.1r). . (((T6,J),J=l,),I=1,N)
."RI E(, 1, Frr=ir-) (AVA\SF(1) ,1=~l,")
C LOS£2

;;P:?.F (*]_7

!7 7..ff3 F (3)

i" 7OF.CWT-(//1X,'File nr'.s for t..ltrix t:sbe save-? '\)
Il FCF:. T (A)
12 =?-..'.T(' Oh: file wallf be :s;ve unler ',0)

17 Fl5*".(V,'Frror .>"ile~ -~vi-v file'

66

6, . . .- °. ., - - ' . - - - . - • - - ." ° . + - . . . ° % • ,

6."°."m * , - - 2""""" "" '- "'""""" "' " "" "" ' ' "" "" ' """"i""*""" "" ' " " "

lIST OF REFERENCES

1. Parker,R.G. and Rardin R.L., "The Traveling Salesman
Prcblem: An Update of Research" Naval Research
Loaistics artgril_ 30 (1983), p. -96

2. Rosenkrantz,D.J, StearnsR.E.q and Lewis,P.M., "An
Analysis of Several Heuristics for the Traveling
Salesman Problem" SIAM Journal of CopUgtin ,vol. 6,
no. 3 (1973), F. S6

q1 vol.

3. Bellmore,M. and Nemhauser,: .L., "The Traveling
Salesman Problem: A Survey", Operations Research 16
(1968), p. 538-558

4. GoldenB. et al., "Approximate Travelig Salesman
Algorithms", g/"rations Research 28 (1980), p. 694-711

5. E eld,M. and Karp,R.M. , "A Dynamic Programming Approach
to Sequencing Problems", SI 1 10 (1962) , p.196-210

6. Little,J.D. et al., "An Algorithm for the Traveling
Salesman Problem#, Operations Research 11 (1963), p.
S72-989

7. Held,. and KarpR.N., "The Traveling Salesman Problem
and Minimum S panning Trees", Ope2aIons Research 18
(1970), p. 113 --162

8. Held,M. and Karxp,R.M., "The Travelin Salesman Problem
and Minimum Spanging Trees: Part II", Mathematical
Prcgramming 1 (1971), p. 6-25

9. Eeld, M. and KazrR.M., "The Traveling Salesman Prcblen
and Minimum Sanning Trees", Qraons Research 18
(1970), p. 113

10. HansenK.H. and Krarup, J., "Improvements of the
Held-Karp Alicrithm for the Symmetric Traveling
Salesman Prob em", _athematical Pr~oamiinq 7 (197,
p. 87-96

11. Houck,D.J. and others, "The Travellin Salesman

Problem as a Constrainted Shortest Pat Problem:
Theory and Computional Experience", OPSEARCH, Vol. 17,
No. 2 & 3, p. 53-108, 198o.

12. Bazaraa,M.S. and GoodeJ.J., "The Traveling Salesman
Prcblem: A Duality Approach", Hjatheitic_ k~ogralmin.
13 (1977), p. 2 1-237 --- .

68

"- -- " " - .,- . . , - *: ": *. "* "? - -" ' - ' "

13. Dantzig,G.,FulkersonR. and Johnson S , "Solution of
a Large Scale "ravelin 9Salesman Proflem", _e.rjations
te-AeaL 2 (19!4), p. K3-410

14. Dantzig,G.,Fulkerson,R., and Johnson,S., "On a Linear
Programming i Combinatorial Approach to the Traveling,Uerations Aesearch 7 (1959), p. 59-66

15. Dantzig,G. ,Fulkerson,, R, and Johnson S., "Solution of
a large Scale 7ravelin9 Salesman Problem", Operations
Research 2 (19!4), p. 97

16. MiliotisP., "Integer Programming Approaches tc the
Traveling Salesman Problem", Mathiematical Pro qramminj
2 (1976y, p. 367-378

17. miliotis,P., "Using Cutting Planes to Solve the
Symmetric Travelling Salesman Problem", mathematical
Prgramming 15 (1978) , p. 177-188

18. Grotschel,M., "On the Symmetric Travelling Salesman
Prcblem: Sclution of a 120 City Problem",
Mathematical Prcqramming Stujd .12 (1980), p. 61-77

19. Padberg,M.W. and Hong ,S, "On the S mmetric Travelling
Salesman Problem: A Comp utational Study", Mathematical
Prcgramming Stu y 12 (1980), p. 87-96

20. Crces,G.A., "A Method For Solving Traveling Salesman
Prcblems", O.erations Research 6 (1958), p. 791-812

21. un s., "Computer Solutions of the Traveling Salesman
PrcJylem" e ytem Technical !Jornal, Vol. 44, No.10, p. 24'522, mg5.

22. Lin,S. and Kernighan,B.W., "An Effective Heuristic
Algorithm for the Traveling Salesman Problem".
.Elralons Research 21 (1973), p. 498-516

23. Christofides N. and Eilon,S., "Algorithms For Large
Scale Travelling Salesman Problems" Operations
Research Quakt1ar, Vol. 23, No. 4, p. 511-5TU,-TT7 -

24. Golden, B. et al. "Approximate Traveling Salesman
Algorithms", Oijratjions esearch 28 (1980), p. 701

25. Rosenkrantz D.J, Stearns, R.E., and Lewis,P.1., "An
Analysis of Several Heuristics for the Traveling
Sale-man Problem"S 11 _12al 24 g na o tinq ,vol. 6,
no. 3 (1973), p. S74

26. Wichmann,B.A. and Hill,I.D., "An Efficient and
Portable Pseudo-random Number Generator" At .lied
Statistics, Vol. 31, No. 2, p. 188-190, 1982.

69

.".

,il l" , .' , . :iii>, .-.... , __,, ._............

27. Karg#R.L. and 7hompson L. "A Heuristic Approach toSolving Travelling Sae ;n Problems". a
§jcine, Vol. 10, No. 2, pm 225-248, 1964._man

70

INIIIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Su erintendent 2
Attn: Library, Code 0142
Naval Postgraduate School
Monterey, Califcrzia 93943

3. Ccmnandant (G-PIE) 2
U.S. Coast Guard
Washington, D.C. 20590

4. Ccmmandant IG-NSE) 1
U.S. Coast Guard
Washington, D.C. 20590

5. Ccmmanding Officer I
USCGC ELACKHAW (WLB 390)
Attn: It. Richard Lang
U.S. Ccast Guard Base
Yerta Buena Island
San Francisco, California 94130

6. Asscc. Professor G.F. Lindsay, Code 55Ls 2
Department of Orerations Research
Naval Postqraduate School
Monterey, Califcrnia 93943

7. Asst. Professor K. Wood, Code 55Wd 1
Department of Orerations Research
Naval Postgraduate School
Monterey, Califcrnia 93943

8. Ccmmandinq Officer 2
USCGC PEN EOBSCO77 BAY (WTGB 107)
Attn: Lt. Jon Bechtle
Governors Island
New York, New York 10004

71

4.

! I

rr.--. .

FILMED

4-85

DTIC
-I- -

.q.

